Search results

1 – 2 of 2
Article
Publication date: 20 March 2018

Ilhem Ghodbane, Rochdi Kherrrat, Saida Zougar, Rim Lamari, Redouane Haddadji and Mohamed Saleh Medjram

The purpose of this work is to explore electrical properties of an electrochemical sensor designed for the detection of malachite green (MG) present in an aqueous solution.

Abstract

Purpose

The purpose of this work is to explore electrical properties of an electrochemical sensor designed for the detection of malachite green (MG) present in an aqueous solution.

Design/methodology/approach

The present sensor consists in the spatial coupling of a polymeric membrane and an ion-sensitive electrode (platinum electrode). The preparation of the polymeric membrane involves the incorporation of an ionophore (D2HPA), a polymer (polyvinylchloride [PVC]) and a plasticizer (dioctyl phthalate [DOP]). Several techniques have been used to characterize this sensor: the cyclic voltammetry, the electrochemical impedance spectroscopy and the optical microscopy. The sensibility, the selectivity and the kinetic study of a modified platinum electrode have been evaluated by cyclic voltammetry.

Findings

The obtained results reveal the possibility of a linear relationship between the current of reduction peaks and MG concentration. A linear response was obtained in a wide-concentration range that stretches from 10−5 to 10−13 mol L−1, with a good correlation coefficient (0.976) and a good detection limit of 5.74 × 10−14 mol L−1 (a signal-to-noise ratio of 3). In addition, the voltammetric response of modified electrode can be enhanced by adding a layer of Nafion membrane. Under this optimal condition, a linear relationship was obtained, with a correlation coefficient of 0.986 and a detection limit of 1.92 × 10−18 mol L−1.

Originality/value

In the present research, a convenient, inexpensive and reproducible method for the detection of MG was developed. The developed sensor is capable of competing against the conventional techniques in terms of speed, stability and economy.

Article
Publication date: 17 June 2020

Ilhem Ghodbane, Saida Zougar, Rim Lamari and Rochdi Kherrrat

This paper aims to focus on the development and characterization of a new electrochemical sensor, designed for the detection of methylene blue present in aqueous medium.

Abstract

Purpose

This paper aims to focus on the development and characterization of a new electrochemical sensor, designed for the detection of methylene blue present in aqueous medium.

Design/methodology/approach

This sensor is obtained through the coupling of a polymeric membrane and an ion-sensitive electrode (platinum electrode). The preparation of the polymeric membrane involves the incorporation of a receptor: β-cyclodextrin (β-CD), a polymer (polyvinylchloride) and a plasticizer (dioctylphtalate). Cyclic voltammetry method (CV) was used to investigate the electrical properties of this electrochemical sensor. The effect of the experimental parameters such as dye initial concentration, scan rate, interfering elements presence and additional Nafion membrane presence was investigated in this paper.

Findings

The results are interesting because the developed sensor gives a linear response in concentrations range of 10−13 M–10−3 M with a good correlation coefficient of 0.979 and a detection limit of 10−13 M, which reflects the sensitivity of this sensor to the target element. The sensibility value is equal to 2. 40 µA mol−1 L.

Originality/value

The present study has shown that the modified electrode is a very good candidate in terms of price, sensibility and reproducibility for the construction of the sensitive sensor for the control of wastewater containing methylene blue.

Details

Sensor Review, vol. 40 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 2 of 2